A CHARACTERIZATION OF THE SIMPLE GROUPS PSL(2, p), p > 3

BY

MARCEL HERZOG

ABSTRACT

Let G be a finite group, containing a self-centralizing subgroup of prime order p. If G is non-solvable, contains more than one class of conjugate elements of order p, and satisfies an additional condition, then G is isomorphic to PSL(2, p), p > 3.

Introduction. The purpose of this paper is to prove the following

THEOREM. Let G be a finite group containing a cyclic subgroup M of prime order p and satisfying the following conditions:

(i) $C_G(m) \subseteq M$ for all $m \in M^*$

(ii) $[N_G(M):M] \neq p-1$

(iii) If $z \in M^{\#}$ and xy = z, where $x^{p} = y^{p} = 1$, then $x \in M$, except possibly in the case that both x and y are conjugate to z^{-1} in G.

Then one of the following statements is true.

(I) G is a Frobenius group with M as the kernel.

(II) There exists a nilpotent normal subgroup K of G such that:

$$G = N_G(M)K, K \cap N_G(M) = 1.$$

(III) G is isomorphic to PSL(2, p), p > 3.

As an immediate consequence of the theorem we get the following characterization of the simple groups PSL(2, p), p > 3, which are known to satisfy the assumptions of the theorem.

COROLLARY. Let G be a finite non-solvable group containing a cyclic subgroup M of prime order p which satisfies conditions (i)-(iii). Then G is isomorphic to PSL(2, p) and p > 3.

Conditions (i) and (ii) certainly exclude the case p = 2, and if p = 3 they allow only the trivial situation $N_G(M) = M$, thus forcing G to be of type (II). However,

Received December 21, 1966.

the case p = 3 was investigated by W. Feit and J. G. Thompson in [3], under the single assumption (i). They classified the groups in question and proved that if G is a simple group, then it is isomorphic to either PSL(2,5) or PSL(2,7).

If no exceptions are allowed in condition (iii), then it follows from [5], Theorem 5 that G is either of type (I) or of type (II).

Groups G containing a subgroup M of order p which satisfies condition (i) were studied by R. Brauer in [1]. Among other results he proved that if G = G'and $[G: N_G(M)] < p(p+3)/2 + 1$ then G is isomorphic either to PSL(2, p), p>3or to PSL(2, p-1), where $p-1=2^n$, n>1. In our proof this result serves as the concluding argument.

The methods of this paper are similar to those applied in [4] and [5], which rely heavily on the work of W. Feit [2]. But in the present case the results of Brauer [1] are available, simplifying the necessary notation as well as many of the arguments. We therefore repeat the necessary definitions from [4] and [5] (not always identically) and prove everything except for the results form [1] and [2], which are summarized. Consequently, this work can be read independently of [4] and [5].

If T is a subset of a group G, $C_G(T)$, $N_G(T)$, |T| and T^* will denote respectively: the centralizer, normalizer, number of elements and the non-unit elements of T. The subscript G will be dropped in cases where it is clear from the context which group is involved. The commutator subgroup of G will be denoted by G', and 1 will be the notation for the trivial subgroup.

Proof of the Theorem. It will be assumed that G satisfies the assumptions of the theorem, but is not of type (I) or (II). It suffices to show that G satisfies (III).

M is certainly a trivial -intersection- set in *G* and it follows easily from (i) that *M* is a Sylow *p*-subgroup of *G*. Since *G* is not of type (II), $N_G(M) \neq M$. Thus the results of W. Feit [2, §2] and R. Brauer [1, pp. 59-60] are applicable, and the relevant ones will be summarized below, together with the corresponding notation.

As $N = N_G(M) \neq M$, N is a Frobenius group with M as its kernel and it is well known that there exists a subgroup Q of N such that:

$$N=QM, \quad Q\cap M=1.$$

Let the order of Q be q; then q divides p-1, and t = (p-1)/q is the number of conjugate classes \tilde{C}_i of elements of order p in N. Since M is a Sylow subgroup of G, t is also the number of conjugate classes C_i of elements of order p in G and $\tilde{C}_i = C_i \cap M$ after rearrangement, if necessary. Let m_1, \dots, m_t be a set of representatives of \tilde{C}_i , $i = 1, \dots, t$; they also represent the C_i , $i = 1, \dots, t$. It follows from the Sylow Theorem that order g of G can be expressed by the formula g = qp(np + 1). As G is not of type (I) n > 0 and consequently

$$(1) g > q p^2.$$

The irreducible characters of N fall under two categories. The first one consists of t characters ξ_i , $i = 1, \dots, t$ of degree q, vanishing outside M. The second category consists of q linear characters which contain M in their kernel. It follows that

$$\sum_{s} \tilde{\xi}_{s}(m_{i})\tilde{\xi}_{s}(m_{j}^{-1}) = \delta_{ij}p - q$$
$$\sum_{s} \tilde{\xi}_{s}(m_{i}) = -1$$

where $1 \leq i, j \leq t$ and the summation ranges over $s = 1, \dots, t$. The index of summation s will have the above meaning throughout this paper.

The exceptional characters of G associated with ξ_i will be denoted by X_i , $i = 1, \dots, t$. We have:

$$X_i(1) = x = (wp + \delta)/t$$

where w is a positive integer and $\delta = \pm 1$; hence $x \ge q$. Also:

$$X_i(m) = \varepsilon \tilde{\xi}_i(m) + c$$
 for all $m \in M^{\#}$, $i = 1, \dots, t$

where c is a rational integer and $\varepsilon = \pm 1$.

The non-exceptional irreducible characters of G non-vanishing on $M^{\#}$ will be denoted by R_i , $i = 1, \dots, q$. Each of these characters is constant on $M^{\#}$, the values being either 1 or -1. Let $R_i(1) = r_i$ and let $R_i(m) = c_i$ for all $m \in M^{\#}$. Then $c_i = \pm 1$ and $r_i \equiv c_i \pmod{p}$. R_1 will denote the principal character of G.

Since all the remaining irreducible characters of G vanish on $M^{\#}$, none of them is linear; hence $[G:G'] \leq q + t$.

We will need also the following inequalities. It follows immediately from the fact that if $c_i = -1$ then $r_i \ge p - 1$ that

(2)
$$S = \sum_{i=1}^{q} c_i^3 / r_i \ge 1 - (q-1)/(p-1).$$

Suppose that $c_i = -1$, $i = 2, \dots, q$. Then:

$$O = \sum_{i=1}^{t} X_i(m_1)x + \sum_{i=1}^{q} c_i r$$
$$= x(tc - \varepsilon) + 1 - \sum_{i=2}^{q} r_i$$

and therefore $tc - \varepsilon \ge 0$. Thus if $tc - \varepsilon < 0$ then at least two c_i are equal to 1. Consequently

(3)
$$S \ge 1 - (q-2)/(p-1) \quad \text{if} \quad tc - \varepsilon < 0$$

Let s_{ijk} , $1 \leq i, j, k \leq t$ denote the coefficient of \tilde{C}_k in $\tilde{C}_i \tilde{C}_j$ and let c_{ijk} , $1 \leq i, j, k \leq t$ denote the coefficient of C_k in $C_i C_j$. Then it is well known that for all $1 \leq i, j, k \leq t$

(4)
$$s_{ijk} = (qp/p^2)(B_{ijk} + q) = (q/p)(B_{ijk} + q)$$

(5)
$$c_{ijk} = (g/p^2)(A_{ijk} + S)$$

where

$$B_{ijk} = (1/q) \sum_{s} \tilde{\xi}_{s}(m_{i})\tilde{\xi}_{s}(m_{j})\tilde{\xi}_{s}(m_{k}^{-1})$$
$$A_{ijk} = (1/x) \sum_{s} X_{s}(m_{i})X_{s}(m_{j})X_{s}(m_{k}^{-1}).$$

Let finally

$$\delta(i,j,k) = \delta_{ik} + \delta_{jk} + \delta_{ij*} \quad 1 \leq i,j,k \leq t$$

$$K = tc^3 - 3c^2\varepsilon - 3cq$$

$$E = \{(i,j,k) \mid 1 \leq i,j,k \leq t, \ (i,j,k) \neq (i,i,i^*)\}$$

where $C_{i^*} = C_i^{-1}$.

We proceed by proving three lemmas, first of which summarizes some auxilary formulas. In each lemma the assumptions on the group G are those mentioned at the beginning of the proof.

LEMMA 1. For all $(i, j, k) \in E$

$$(6) s_{ijk} = c_{ijk}$$

(7)
$$A_{ijk} = (1/x)(\epsilon q B_{ijk} + c\delta(i,j,k)p + K)$$

$$(8) tc^2 = 2\varepsilon c$$

Proof. Since M is a trivial-intersection-set in G, condition (iii) implies that $s_{ijk} = c_{ijk}$ whenever $(i, j, k) \in E$. To prove (7) notice that:

$$\begin{aligned} xA_{ijk} &= \sum_{s} (\varepsilon\xi_{s}(m_{i}) + c)(\varepsilon\xi_{s}(m_{j}) + c)(\varepsilon\xi_{s}(m_{k}^{-1}) + c) \\ &= \varepsilon\sum_{s} \tilde{\xi}_{s}(m_{i})\tilde{\xi}_{s}(m_{j})\tilde{\xi}_{s}(m_{k}^{-1}) \\ &+ c\sum_{s} [\tilde{\xi}_{s}(m_{i})\tilde{\xi}_{s}(m_{j}) + \tilde{\xi}_{s}(m_{i})\tilde{\xi}_{s}(m_{k}^{-1}) + \tilde{\xi}_{s}(m_{j})\tilde{\xi}_{s}(m_{k}^{-1})] \\ &+ \varepsilon c^{2}\sum_{s} [\tilde{\xi}_{s}(m_{i}) + \tilde{\xi}_{s}(m_{j}) + \tilde{\xi}_{s}(m_{k}^{-1})] + c^{3}t \\ &= \varepsilon qB_{ijk} + c(\delta_{ij} \cdot p + \delta_{ik}p + \delta_{jk}p - 3q) - 3c^{2}\varepsilon + c^{3}t \\ &= \varepsilon qB_{ijk} + c\delta(i,j,k)p + K. \end{aligned}$$

1967] A CHARACTERIZATION OF THE SIMPLE GROUPS PSL(2, p) p > 3 83

Finally (8) follows from:

$$p = |C_G(m_1)| = \sum_s X_s(m_1)X_s(m_1^{-1}) + q$$

= $\sum_s (\varepsilon \xi_s(m_1) + c)(\varepsilon \xi_s(m_1^{-1}) + c) + q$
= $p - q - 2\varepsilon c + tc^2 + q.$

LEMMA 2. q = (p-1)/2 and G' = G.

Proof. Suppose that q < (p-1)/2; then $t \ge 3$ and by (8) c = 0. Hence by (6) and (7) all B_{ijk} , $(i, j, k) \in E$, satisfy the same linear equation:

(9)
$$qB_{ijk} + q^2 = g(\varepsilon qB_{ijk} + xS)/px$$

Since $q = g\epsilon q / px$ would imply that $g = px \leq p\sqrt{g}$, $g \leq p^2$ in contradiction to (1), all B_{ijk} , $(i,j,k) \in E$, are equal to each other. Let $C_3 \neq C_1, C_1^{-1}$; then:

$$q = \sum_{i=1}^{t} s_{i13} = t(qB_{113} + q^2)/p.$$

Therefore $qB_{113} + q^2 = pq/t$, which when inserted into (9) yields:

$$g = \frac{p^2 q x}{(pq - tq^2)\varepsilon + txS} = \frac{p^2 q^2}{(q^2 \varepsilon/x) + (p - 1)S}$$

As $x \ge q$, $(p-1)S \ge p-1-(q-1)=p-q$ and p>3q, it follows that:

$$g \leq p^2 q^2 / (-q + p - q) \leq p^2 q$$

in contradiction to (1). Thus q = (p-1)/2.

As $[G: G'] \leq q + t < p$, the order of G' is of the form q'p(np + 1). That follows from the fact that the number of Sylow p-subgroups of G' equals to that of G. If G' satisfies (I), then obviously G satisfies (I), in contradiction to our assumptions. If G' is of type (II), then the normalizer N_1 of M in G' has a nilpotent normal complement K in G'. Let F be the Fitting subgroup of G'; then clearly $K \subset F$ and $M \cap F = 1$. Since $G' = N_1K$, $F = (N_1 \cap F)K$. Let $x \in N_1 \cap F$, $m \in M^*$; then $x^{-1}m^{-1}xm \in M \cap F = 1$, hence $x \in C_G(m) \cap F = M \cap F = 1$. Thus F = Kand K is characteristic in G', hence normal in G. It follows that G is of type (II), again a contradiction. Therefore G' satisfies the same assumptions as G does, and consequently by the first part of this proof q' = (p-1)/2 = q, G' = G.

LEMMA 3. If q = (p - 1)/2 is odd, then:

(10)
$$g = \frac{p^2(p-3)x}{-2(q+1)+4xS}, \quad 2c-\varepsilon = -1.$$

If q = (p-1)/2 is even, then:

(11)
$$g = \frac{p^2(p-1)x}{-2q+4xS}, \quad 2c-\varepsilon = 1.$$

Proof. By (6), (4), (5), and (7) for all $(i, j, k) \in E$

(12)
$$qB_{ijk} + q^2 = g(\varepsilon qB_{ijk} + K + \delta(i,j,k)cp + xS)/px.$$

As t = 2, it is easy to check that if q is odd then $\delta(i, j, k) = 2$ for all $(i, j, k) \in E$ and if q is even then $\delta(i, j, k) = 1$ for all $(i, j, k) \in E$. Since $q \neq g \in q/px$, in each case all the B_{ijk} are equal to each other for all $(i, j, k) \in E$; so are the corresponding s_{ijk} . Thus if q is odd

$$q = 1 + s_{122} + s_{222}, (qB_{122} + q^2)/p = s_{122} = (q-1)/2 = (p-3)/4$$

and (12) yields

$$g = \frac{p^2(p-3)x}{\varepsilon[p(p-3)-(p-1)^2] + 4K + 8cp + 4xS}$$

If q is even, then:

$$q = s_{212} + s_{112}, (qB_{112} + q^2)/p = s_{112} = q/2 = (p-1)/4.$$

Consequently, (12) yields:

$$g = \frac{p^2(p-1)x}{\varepsilon[p(p-1)-(p-1)^2] + 4K + 4cp + 4xS}.$$

We will now show that (11) holds; the proof of (10) is similar and it is left to the reader. It suffices to show that:

$$\varepsilon(p-1) + 4K + 4cp = -2q = 1 - p$$
 and $2c - \varepsilon = 1$.

Now $K = 2c^3 - 3c^2\varepsilon - 3cq$ and $c^2 = c\varepsilon$; hence:

$$4K = -4c^{2}\varepsilon - 12cq = -4c^{2}\varepsilon - 6cp + 6c = 2c - 6cp$$

and

$$\varepsilon(p-1) + 4K + 4cp = (\varepsilon - 2c)p + (2c - \varepsilon).$$

Thus it suffices to show that $2c - \varepsilon = 1$. But

$$(2c - \varepsilon)^2 = 4c^2 - 4c\varepsilon + 1 = 1$$

and consequently it remains to prove that $2c - \varepsilon \neq -1$. Suppose that $2c - \varepsilon = -1$ then:

$$g = \frac{p^2(p-1)x}{p-1+4xS} \le \frac{p^2(p-1)}{4[1-(q-1)/(p-1)]} < (p-1)p^2/2 = qp^2$$

in contradiction to (1). The proof of the lemma is complete.

84

We will continue now with the proof of the theorem. Lemmas 2 and 3 yield, in view of (2), (3) and the fact that $x \ge q$, that:

$$g \leq \frac{p^2(p-1)}{\left[-2(q+1)/q\right] + 4\left[1 - (q-2)/(p-1)\right]} = (p-1)^2 p^2/4.$$

As g = (p-1)p(np+1)/2, it follows that n < (p-1)/2. Consequently by Brauer [1, Corollary, p. 70] either G is isomorphic to PSL(2, p), p > 3 or it is isomorphic to PSL(2, p-1), where $p-1 = 2^m > 2$. Since q = (p-1)/2, the second case may occur only if q = 2, p=5. But PSL(2, 4) is isomorphic to PSL(2,5); hence p > 3 and G is isomorphic to PSL(2,p) for all p. The proof of the theorem is complete.

References

1. R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. 44 (1943), 55-79.

2. W. Feit, On a class of doubly transitive permutation groups. Ill. J. Math. 4 (1960), 170-186.

3. W. Feit and J. G. Thompson, Finite groups which contain a self-centralizing subgroup of order 3. Nagoya J. Math. 21 (1962), 185-197.

4. M. Herzog, On finite groups which contain a Fröbenius subgroup. To appear in Journal of Algebra.

5. M. Herzog, A characterization of some projective special linear groups. To appear.

UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS