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ABSTRACT

Let G be a finite group, containing a self-centralizing subgroup of prime
order p. If G is non-solvable, contains more than one class of conjugate
elements of order p, and satisfies an additional condition, then G is isomorphic
to PSL (2,p),p > 3.

Introduction. The purpose of this paper is to prove the following

THEOREM. Let G be a finite group containing a cyclic subgroup M of prime
order p and satisfying the following conditions:
(i) Cgm)c M for all meM*
@) [Ne(M): M]»p—1
(iii) If ze M* and xy = z, where x” = y? =1, then x € M, except possibly in
the case that both x and y are conjugate to z ' in G.
Then one of the following statements is true.
(D) G is a Frobenius group with M as the kernel.
(I) There exists a nilpotent normal subgroup K of G such that:

G = Ng(M)K, K N Ng(M) =1.

(II) G is isomorphic to PSL(2,p), p> 3.
As animmediate consequence of the theorem we get the following characterization
of the simple groups PSL(2, p), p > 3, which are known to satisfy the assumptions
of the theorem.

COROLLARY. Let G be a finite non-solvable group containing a cyclic subgroup
M of prime order p which satisfies conditions (i)(iii). Then G is isomorphic to
PSL(2,p) and p > 3.

Conditions (i) and (ii) certainly exclude the case p =2, and if p = 3 they allow
only the trivial situation Ng(M) = M, thus forcing G to be of type (II). However,
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the case p = 3 was investigated by W. Feit and J. G. Thompson in [3], under the
single assumption (i). They classified the groups in question and proved that if G
is a simple group, then it is isomorphic to either PSL(2,5) or PSL(2,7).

If no exceptions are allowed in condition (iii), then it follows from [5], Theorem
5 that G is either of type (I) or of type (II).

Groups G containing a subgroup M of order p which satisfies condition
(i) were studied by R. Brauer in [1]. Among other results he proved that if G = G’
and [G: Ng(M)] < p(p + 3)/2 + 1 then G is isomorphic either to PSL(2, p), p>3
or to PSL(2,p — 1), where p—1=2", n> 1. In our proof this result serves as
the concluding argument.

The methods of this paper are similar to those applied in [4] and [5], which
rely heavily on the work of W. Feit [2]. But in the present case the results of
Brauer [1] are available, simplifying the necessary notation as well as many of the
arguments. We therefore repeat the necessary definitions from [4] and [5] (not
always identically) and prove everything except for the results form [1] and [2],
which are summarized. Consequently, this work can be read independently of
[4] and [5].

If Tis a subset of a group G, Ce(T), No(T), | T | and T* will denote respectively:
the centralizer, normalizer, number of elements and the non-unit elements of T.
The subscript G will be dropped in cases where it is clear from the context which
group is involved. The commutator subgroup of G will be denoted by G’, and 1
will be the notation for the trivial subgroup.

Proof of the Theorem. It will be assumed that G satisfies the assumptions
of the theorem, but is not of type (I) or (II). It suffices to show that G satisfies (III).

M is certainly a trivial -intersection- set in G and it follows easily from (i) that M
is a Sylow p-subgroup of G. Since G is not of type (II), Ng(M) % M. Thus the
results of W. Feit [2, §2] and R. Brauer [1, pp. 59-60] are applicable, and the
relevant ones will be summarized below, together with the corresponding notation.

As N = Ngz(M) # M, N is a Frobenius group with M as its kernel and it is well
known that there exists a subgroup @ of N such that:

N=0M, 0NM=1.

Let the order of Q be gq; then g divides p — 1, and t = (p — 1) /q is the number of
conjugate classes C, of elements of order p in N. Since M is a Sylow subgroup of
G, t is also the number of conjugate classes C; of elements of order p in G and
Ci = C; " M after rearrangement, if necessary. Let my, -, m, be a set of represen-
tatives of C'i, i=1,..,t; they also represent the C,, i = 1, --+, ¢, It follows from the
Sylow Theorem that order g of G can be expressed by the formula g = gp(np + 1).
As G is not of type (I) n >0 and consequently

@ 2> qp*
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The irreducible charactets of N fall under two categories. The first one consists
of t characters &,i=1,---, ¢ of degree g, vanishing outside M. The second
category consists of g linear characters which contain M in their kernel. It
follows that

sz ~s(mi)Es(m;1) = 5l'fp -4
.\‘2 Es(mi) == 1

where 1 £ i, j <t and the summation ranges over s = 1,---,¢. The index of sum-
mation s will have the above meaning throughout this paper.

The exceptional characters of G associated with & will be denoted by X,
i=1--,t. We have:

X{(1)=x=(wp+)/t
where w is a positive integer and 6 = + 1; hence x 2 g. Also:
X{(m)=ce&(m)+c forallmeM? i=1,-t

where ¢ is a rational integer and ¢ = + 1.

The non-exceptional irreducible characters of G non-vanishing on M* will be
denoted by R;, i = 1, -+, ¢. Each of these characters is constant on M*, the values
being either 1 or — 1. Let R(1) =r; and let R(m) = c; for all me M*. Then
¢;=+1and r;=¢; (mod p). R, will denote the principal character of G.

Since all the remaining irreducible characters of G vanish on M*, none of them
is linear; hence [G: G'] <q +t.

We will need also the following inequalities. It follows immediately from the
fact that if ¢;= — 1 then r;2 p—1 that

)] S=

I t4e

¢nzl=@-nip-1.

Suppose that ¢;= —1, i=2,-.-,q. Then:

M«

0=

q
X(md)x+ X ¢r
. -

1 i=1

q
=x(tc—e)+1 - X r,
1=2

and therefore tc — & = 0. Thus if t¢c — ¢ < 0 then at least two ¢, are equal to 1.
Counsequently

3) §S21~(g=-2)/(p-=1) if tc—e<0
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Let s, 1 < i,j,k < t denote the coefficient of C; in C,C; and let ¢y, 1< 1,5,k
<t denote the coefficient of C; in C;C;. Then it is well known that for all
I1sijkst

) S = (@p[p*)Bij + @) = (¢ /p)(Bij + @)
&) ap=(&/P) (A4 + S)
where

By = (1/q) ; Es(mi)zs(mj) Es(mk—l)
A= (1/x) Z X (m)X (m)X (m;").
Let finally
6(i,j,k)= 6ik+5jk+5ijt léi,],két
K = te® -3¢ —3¢q
E = {(i.jb|12ijk<t, (0,4,K)#G,6,i%)}

I

where C;=C;%

We proceed by proving three lemmas, first of which summarizes some auxilary
formulas. In each lemma the assumptions on the group G are those mentioned at
the beginning of the proof.

LemmA 1. For all (i,j,k)eE

(6) Sijk = Cijx
@) Ay = (1/x)(eqByp+ ¢8(i, j, k)p + K)
® te? = 2¢ec

Proof. Since M is a trivial-intersection-set in G, condition (iii) implies that
815 = ¢, Whenever (i,j,k)e E. To prove (7) notice that:

A = T (@ m) + ) (E(m) + )l m ) + )
= X ELmEm)E(m")
+ ¢ X [8m)i(m)+ E(m)Em 1) + E(mPEm )]
+ec? T [Z0m) + 8 m)) + Emi D] + >

= &qByy + c(8;j0p + 0P + 0 — 3q) — 3c%e + ¢t

quijk 4+ Ca(i,j, k)p + K.
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Finally (8) follows from:
p= l Cc(mx)l = 2_‘: X (m)X,(m')+q

Z (@& (my) + ) mi ) + ) +q

= p—q—2ec+t?+gq.
LEmMA 2. g=(p—-1)/2 and G'=G.

Proof. Suppose that g < (p — 1)/2; then ¢t = 3 and by (8) ¢ = 0. Hence by (6)
and (7) all B, (i,j,k)€E, satisfy the same linear equation:

® 9B, + q* = g(egB;j + x8) [ px.

Since g = geq /px would imply that g = px < p\/g, g < p? in contradiction to (1),
all By, (i,j, k) €E, are equal to each other. Let C3% C;,C7'; then:

t
q= 2 sy3=4qB 3+ q*)/p.
i=1
Therefore gB,,3; + q> = pq/t, which when inserted into (9) yields:

_ pgx _ p*q?
8= a—tge+ x5 (e +(p-DS

As x2¢q, (p—1)S2p—-1-(q—1)=p—q and p>3g, it follows that:
g’ (—q+p—9sr’q

in contradiction to (1). Thus g =(p—1)/2.

As[G: G'] £ g + t < p, the order of G' is of the form q’p(np + 1). That follows
from the fact that the number of Sylow p-subgroups of G’ equals to that of G.
If G’ satisfies (1), then obviously G satisfies (I), in contradiction to our assumptions.
If G’ is of type (IT), then the normalizer N, of M in G’ has a nilpotent normal
complement K in G'. Let F be the Fitting subgroup of G’; then cleatly K = F
and MNF=1. Since G'=N,K, F=(N;NF)X. Let xe N,NF, meM¥*;
then x 'm™'xmeM NF =1, hence xeC4m)NF=MNF=1. Thus F=K
and K is characteristic in G’, hence normal in G. It follows that G is of type (II),
again a contradiction. Therefore G’ satisfies the same assumptions as G does, and
consequently by the first part of this proof ¢'=(p—1)/2=¢q, G'=G.

LemMA 3. If g=(p—1)/2 is odd, then:

(10) — pZ(P - 3)x

£= Sg+D+axs X7e="1
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If q=(p—1)/2 is even, then:

_ Plp—=bx e
11 g——2q+4xS’ 2c—¢=1.
Proof. By (6), (4), (5), and (7) for all (i,j,k)eE
12) 4B + q* = g(eqgB;; + K + 6(i, j, k)ep + xS) [ px.

As t =2, it is easy to check that if g is odd then 6(j,j, k) = 2 for all (i,j, k)€ E and
if q is even then (i, j, k) = 1 for all (i, j, k) € E. Since g # geq /px, in each case all
the B, are equal to each other for all (i,j, k)€ E; so are the corresponding s; ;.
Thus if g is odd

g=14513;+5222,(qB122+ ¢*)p=5122=(q—-1)2=(p-3)/4
and (12) yields

_ pX(p—3)x
E = APp—3) — (0 — D?] + 4K + 8cp + 4xS

If q is even, then:

g =512+ 5112, (@B112 + 4 [p=5112=4q2=(p - 1) /4
Consequently, (12) yields:
_ P’(p—1)x
&= pp— 1) — (p— 2] + 4K + 4cp + 4x8"

We will now show that (11) holds; the proof of (10) is similar and it is left to the
reader. It suffices to show that:

p—1)+4K+4cp=—-2q=1—-pand 2c—e=1.
Now K =2¢3 — 3¢%¢ — 3cq and ¢? = ce; hence:

4K = — 4¢*s — 12¢q = — 4c%e — 6¢p + 6¢ = 2¢ — 6¢p
and
gp—1)+4K +4cp=(—20)p+ (2c—e¢).

Thus it suffices to show that 2c — ¢ =1. But
2c—e)?=4c>—-4dce+1=1

and consequently it remains to prove that 2¢ — ¢ % — 1. Supposethat2c —e= —1
then:

g P@=Dx _ -1
p=1+4xS T4[1-(g@-D/(p-1)

]< (p - 1Dp*/2 = qp*

in contradiction to (1). The proof of the lemma is complete.
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We will continue now with the proof of the theorem.Lemmas 2 and 3 yield, in
view of (2), (3) and the fact that x = ¢, that:

g < P(p—1)

“[-2q¢+D/gl+41-(q-2/(p - 1]
As g=(p~Dpnp+1)/2, it follows that n <(p—1)/2. Consequently by
Brauer [1, Corollary, p. 70] either G is isomorphic to PSL(2,p), p> 3 or it is
isomorphic to PSL(2,p—1), where p—1=2">2. Since q=(p—1)/2, the
second case may occur only if g = 2, p=35. But PSL(2,4) is isomorphic to PSL(2,5);
hence p>3 andG is isomorphic to PSL(2,p) for all p. The proof of the theorem is
complete.

= (p - 1)’p*/4.
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