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ABSTRACT 

Let G be a finite group, containing a self-centralizing subgroup of prime 
order p. If G is non-solvable, contains more than one class of conjugate 
elements of order p, and satisfies an additional condition, then G is isomorphic 
to PSL (2,p), p > 3. 

Introduction. The purpose of this paper is to prove the following 

THEOREM. Let G be a finite group containing a cyclic subgroup M of prime 

order p and satisfying the following conditions: 
(i) C6(m)~_M for  all m E M  ~ 

(ii) INn(M): 3/1] ~ p - 1 
(iii) I f  z E M # and xy = z, where xP = yV= 1, then x e M,  except possibly in 

the case that both x and y are conjugate to z -  1 in G. 
Then one of the following statements is true. 
(I) G is a Frobenius group with M as the kernel. 
(II) There exists a nilpotent normal subgroup K of  G such that: 

G = No(M)K, K ~ No(M ) = 1. 

(III) G is isomorphic to PSL(2,p),  p > 3. 
As an immediate consequence of the theorem we get the following characterization 

of the simple groups PSL(2, p), p > 3, which are known to satisfy the assumptions 
of the theorem. 

COROLLARY. Let G be a finite non-solvable group containing a cyclic subgroup 
M of prime order p which satisfies conditions (i)-(iii). Then G is isomorphic to 

PSL(2, p) and p > 3. 
Conditions (i) and (ii) certainly exclude the case p = 2, and ff p = 3 they allow 

only the trivial situation Na(M) = M, thus forcing G to be of type (II). However, 
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the case p = 3 was investigated by W. Feit and J. G. Thompson in [3], under the 
single assumption (i). They classified the groups in question and proved that if G 
is a simple group, then it is isomorphic to either PSL(2,5) or PSL(2,7). 

If no exceptions are allowed in condition (iii), then it follows from [5], Theorem 
5 that G is either of type (I) or of type (II). 

Groups G containing a subgroup M of order p which satisfies condition 
(i) were studied by R. Brauer in [1]. Among other results he proved that if G = G' 
and [G: No(M)l < I~P + 3)/2 + 1 then G is isomorphic either to PSL(2,p), p > 3  
or to PSL(2, p - 1), where p - 1 = 2 n, n > 1. In our proof this result serves as 
the concluding argument. 

The methods of this paper are similar to those applied in [4] and [5], which 
rely heavily on the work of W. Feit [2]. But in the present case the results of 
Brauer [1] are available, simplifying the necessary notation as well as many of the 
arguments. We therefore repeat the necessary definitions from [4] and [5] (not 
always identically) and prove everything except for the results form [1] and [2], 
which are summarized. Consequently, this work can be read independently of 
E41 and [51. 

If Tis a subset of a group G, Co(T), No(T), [ T[ and T # will denote respectively: 
the centralizer, normalizer, number of elements and the non-unit elements of T. 
The subscript G will be dropped in cases where it is clear from the context which 
group is involved. The commutator subgroup of G will be denoted by G', and 1 
will be the notation for the trivial subgroup. 

Proof of the Theorem. It will be assumed that G satisfies the assumptions 
of the theorem, but is not of type (I) or (II). It suffices to show that G satisfies (III). 

M is certainly a trivial -intersection- set in G and it follows easily from (i) that M 
is a Sylow p-subgroup of G. Since G is not of type (II), No(M) ~ M. Thus the 
results of W. Felt [2, §2] and R. Brauer [1, pp. 59-60] are applicable, and the 
relevant ones will be summarized below, together with the corresponding notation. 

As N = No(M) ~ M, N is a Frobenius group with M as its kernel and it is well 
known that there exists a subgroup Q of N such that: 

N=QM, Q ~ M = I .  

Let the order of Q be q; then q divides p - 1, and t = (p - 1) ]q is the number of 
conjugate classes 0~ of elements of order p in N. Since M is a Sylow subgroup of 
G, t is also the number of conjugate classes C~ of elements of order p in G and 
0t = C~ n M after rearrangement, if necessary. Let ml, ..., mt be a set of represen- 
tatives of ~ ,  i = 1, ..., t; they also represent the Cz, i = 1, ..., t. It follows from the 
Sylow Theorem that order g of G can be expressed by the formula g = qp(np + 1). 
As G is not of type (I) n > 0 and consequently 

(1) g > qp2. 
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The irreducible characters of  N fall under two categories. The first one consists 

of  t characters ~, i = 1, . . . ,  t of  degree q, vanishing outside M. The second 

category consists of  q linear characters which contain M in their kernel. I t  
follows that 

~, ~ ( m i ) ~ ( m  f 1) = ~ijP -- q 

Z ~ s ( m i ) = - I  

where 1 < i, j < t and the summation ranges over s = 1, ..., t. The index of sum- 

mation s will have the above meaning throughout this paper. 

The exceptional characters of  G associated with ~i will be denoted by X,, 

i =  1,. .- , t .  We have: 

Xi(1) = x = (wp  + ~) / t  

where w is a positive integer and 6 = + 1; hence x > q. Also: 

X t ( m  ) = e~i(rn) + c for all m e M #, i = 1,.. . ,  t 

where c is a rational integer and e = + 1. 

The non-exceptional irreducible characters o f  G non-vanishing on M # will be 

denoted by R~, i = 1, ..., q. Each of these characters is constant on M # , the values 
being either 1 or - 1 .  Let R~(1)= r i and let R l ( m  ) = ci for all m e M #. Then 

c i = + 1 and ri - ci (mod p). R1 will denote the principal character of  G. 
Since all the remaining irreducible characters of  G vanish on M #, none of them 

is linear; hence [G: G']  < q + t. 

We will need also the following inequalities. I t  follows immediately f rom the 
fact that if ci = - 1 then r~ > p - 1 that 

q 

(2) s = X 
t = l  

c3~ /r, >= 1 -- (q -- 1)/(p -- 1). 

Suppose that c~ = - 1 ,  i = 2, . . . ,q .  Then: 

t q 

0 = Z X ~ ( m l ) x  + Z c,r 
t = l  1=1  

q 

= x ( t c  - 8) + 1 - Z 
1---2 

1" t 

and therefore tc - 8 ~_ O. Thus if tc - ~ < 0 then at least two c~ are equal to 1. 
Consequently 

(3) S > I - (q - 2)/(p - I) if tc - 8 < 0 



(4) 

(5) 

where 
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Let siih, 1 < i,j, k < t denote the coefficient of ~g in ~ j  and let cok, 1 < i, j ,k 
< t denote the coefficient of Ck in C~Cj. Then it is well known that for all 
1 = < i , j ,  k = < t 

Sijk = (qp /p2) (Buk + q) = (q /p) (Bij k + q) 

ctlk = (g /p2) (A~j k + S) 

Let finally 

t~(i,j, k) -- 

K =  

B~s~ = O/q) Z 
$ 

A,jk= ( l /x )  X 
$ 

~ ( m 3 ~ ( m  l) ~ ( m Z  1 ) 

X~(mi)X,(ml)Xs(mk 1 ). 

~ik + 6j~ + t~tj. 1 < i,j, k < t 

tc 3 - 3c2~ - 3cq 

E -- {(i,j, k) l 1 _-< i , j ,k  < t, (i ,j ,  k) # (i, i, i*)} 

where C~. = C/-l. 
We proceed by proving three lemmas, first of  which summarizes some auxilary 

formulas. In each lemma the assumptions on the group G are those mentioned at 
the beginning of the proof. 

L E M ~  1. For all (i,j,  k) ~ E 

(6) s~jk = c~jk 

(7) Aok = (1/x)(eqBij k + c3(i,j, k)p + K) 

(8) tc 2 = 2ec 

Proof. Since M is a trivial-intersection-set in G, condition (iii) implies that 
s~j k = c,j~ whenever (i,j,  k ) e  E. To prove (7) notice that: 

xA~jk = ~ (e~(ml) + c)(e~,(mj) + c)(e~s(mk 1) + c) 
$ 

= 8 ~, ~ , (m3~(mi)~(m~ 1) 
s 

+ c ~ [~,(m3~,(mj) + ~,(m,)~(mk 1) + ~(mj)~,(m~ 1)] 
8 

+ ec 2 ~ C~,(m,) + ~(mj) + ~s(mkl)] + cat 
$ 

= eqBll~ + c(3il*P + 6~P + 61kP -- 3q) -- 3C2e + cat 

= eqB~l k + c~(i,j, k)p + K. 
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Finally (8) follows from: 

p=lC~(ml)] = Z 
$ 

Z 
dt 

X~(mi)Xs(m ~ 1) + q 

(e~+(ml) + c)(e~(mT') + c) + q 

= p - q - - 2 e c + t & + q .  

LEMMA 2. q = ( p - - 1 ) / 2  and G'=G.  

P r o o f .  Suppose that q < (p  - 1)/2; then t > 3 and by (8) c = 0. Hence by (6) 
and (7) all B,~ k, (i,j, k )eE,  satisfy the same linear equation: 

(9) qBuk + q2 = g(e.qBijk + XS)/px. 

Since q = geq/px would imply that g = px <= Px/g, g <- p2 in contradiction to (1), 
all BUk , ( i , j ,k)eE,  are equal to each other. Let Ca~C1,C-t l ;  then: 

t 

q = E  
i = l  

s~la = t(qBll 3 + q2) /p. 

Therefore qBll a + q2= pq/t, which when inserted into (9) yields: 

p2qx p2q2 
g = (pq - tq2)~ + txS = (q2e/x) + (p - 1)S 

As x => q, (p - 1)S > p - 1 - (q - 1) = p - q and p > 3q, it follows that: 

g < p2q2/(  _ q + p _ q) < p~q 

in contradiction to (1). Thus q = ( p -  1)/2. 
As rG: G'] ___ q + t < p, the order of G' is of the form q'p(np + 1). That follows 

from the fact that the number of Sylow p-subgroups of G' equals to that of G. 
If  G' satisfies (I), then obviously G satisfies (I), in contradiction to our assumptions. 
I f  G' is of type (II), then the normalizer N1 of M in G' has a nilpotent normal 
complement K in G'. Let F be the Fitting subgroup of G'; then dearly K ~ F 
and M n F = I .  Since G ' = N 1 K ,  F = ( N I t ~ F ) K .  Let x~N~ n F ,  m e M # ;  
then x-  lm- ~xm e M n F = 1, hence x E CG(m) t~ F = M • F = 1. Thus F = K 
and K is characteristic in G', hence normal in G. It follows that G is of type (II), 
again a contradiction. Therefore G' satisfies the same assumptions as G does, and 
consequently by the first part of this proof q' = ( p - 1 ) / 2 =  q, G ' =  G. 

LEMMA 3. I f  q = ( p - - 1 ) / 2  is odd, then: 

(10) p2(p _ 3)x 2¢ - 8 = - 1. 
g = - 2 ( q + l ) + 4 x S  ' 
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I f  q = ( p -  1)/2 is even, then: 

p 2 ( p _  1)x 2 c -  e = 1. 
(11) g = - 2 q + 4 x S  ' 

Proof .  By (6), (4), (5), and (7) for  all (i , j ,  k ) e  E 

(12) qB~j k + q2 = g(eqBuk + K + 6( i , j , k )cp  + x S ) / p x .  

As t = 2, it is easy to check that  i f  q is odd  then 6(i,j ,  k) = 2 for  all ( i , j ,  k) ~ E and  
if q is even then 6(i,j ,  k) = 1 for  all ( i , j ,  k) ~ E. Since q ~ gsq /px ,  in each case all 

t h e  B~j~ are equal to each other  for  all ( i , j ,  k ) ~  E; so are the corresponding St~k. 

Thus  if q is odd  

q = 1 + s122 dr" S 2 2 2 , ( q B 1 2 2 - 1 -  q2)/p  = S122 = ( q  - -  1)/2 = (p - 3)/4 

and  (12) yields 

p2(p -- 3)X 

g = e[p(p -- 3) -- (p -- 1) 2] + 4K + 8cp + 4xS  " 

I f  q is even, then:  

q = s212 + s112, (qB1~2 + q2) /p  = s112 = q / 2  = (/7 - 1)/4. 

Consequently,  (12) yields: 

p 2 ( p _  1)x 

g = e[p(p - 1) - (p - 1) 2] + 4K + 4cp + 4xS" 

We will now show that  (11) holds;  the p r o o f  of  (10) is similar and it is left to the 

reader.  I t  suffices to show that :  

e ( p - 1 ) + 4 K + 4 c p = - 2 q = l - p a n d 2 c - 8 = l .  

N o w  K = 2c a - 3c28 - 3cq and c 2 = c8; hence:  

4 K  = - 4e28 - 12cq = - 4c28 - 6cp + 6e = 2c - 6cp 

and 

n(p - 1) + 4 K  + 4ep = (8 - 2c)p + (2c - 8). 

Thus  it suffices to show tha t  2c - ~ = 1. But 

(2c - 8) 2 = 4c 2 - 4c8 + 1 = 1 

and  consequently it remains to prove  tha t  2c - 8 # - 1. Suppose tha t  2c - 8 = - 1 

then:  

g = p 2 ( p -  1)x p 2 ( p -  1) 
p -  1 ~ '4"~S =< 4[1 - ( q  - 1) / (p 1)] < (p - 1)p2/2 = qp2 

in contradict ion to  (1). The  p r o o f  of  the l e m m a  is complete.  
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We will continue now with the proof  of the theorem.Lemmas 2 and 3 yield, in 
view of  (2), (3) and the fact that x >= q, that: 

p 2 ( p _  1) = ( p -  1)2p 2/4. 
g - [" -- 2(q + 1) /q] ,+  411 - (q - 2)/(p - 1)] 

As g = ( p -  1)p(np + 1)/2, it follows that n < ( p -  1)/2. Consequently by 
Brauer [1, Corollary, p. 70] either G is isomorphic to PSL(2 ,p ) ,  p > 3 or it is 
isomorphic to P S L ( 2 , p -  1), where p -  1 = 2m> 2. Since q = ( p -  1)/2, the 

second case may occur only if q = 2, p = 5. But PSL(2, 4) is isomorphic to PSL(2,5); 
hencep > 3 and G is isomorphic to PSL(2 ,p)  for allp. The proof  of  the theorem is 

complete. 

REFERENCES 

1. R. Brauer, On permutation groups of  prime degree and related classes o f  groups, Ann. of 
Math. 44 (1943), 5.5-79. 

2. W. Fcit, On a class of  doubly transitive permutation groups. Ill. J. Math. 4 (1960), 170--186. 
3. W. Feit and J. G. Thompson, Finite groups which contain a self-centralizing subgroup 

of  order 3. Nagoya J. Math. 21 (1962), 185-197. 
4. M. Herzog, On finite groups which contain a Fri~benius subgroup. To appear in Journal 

of Algebra. 
5. M. Herzog, A characterization o f  some projective special linear groups. To appear. 

UNIVERSITY OF ILLINOIS, 
U ~ A ,  ILLINOIS 


